Cart (Loading....) | Create Account
Close category search window
 

An Efficient Linearization Scheme for a Digital Polar EDGE Transmitter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Mehta, J. ; Xtendwave Inc., Dallas, TX, USA ; Zoicas, V. ; Eliezer, O. ; Staszewski, R.B.
more authors

A new linearization scheme is proposed, which compensates for nonlinear distortions experienced in the amplitude-modulation path of a digital polar EDGE transmitter integrated in a 65-nm CMOS transceiver system-on-chip (SoC) based on the Digital RF Processor (DRP) technology. The measured amplitude and phase distortions are stored in lookup tables and used for predistortion without requiring inversion computations, thus achieving significant complexity reduction. Adaptive linear interpolation along with adaptive resolution enhancement provides the desired performance across power levels. With the presented scheme, the transmitter's measured performance significantly exceeds the EDGE specifications with an error vector magnitude (EVM) of typically 3% and a close-in modulated spectrum of -64 dB at a 400-kHz offset from the carrier frequency.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:57 ,  Issue: 3 )
RFIC Virtual Journal, IEEE

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.