Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Season-Dependent Condition-Based Maintenance for a Wind Turbine Using a Partially Observed Markov Decision Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eunshin Byon ; Dept. of Ind. & Syst. Eng., Texas A&M Univ., College Station, TX, USA ; Yu Ding

We develop models and the associated solution tools for devising optimal maintenance strategies, helping reduce the operation costs, and enhancing the marketability of wind power. We consider a multi-state deteriorating wind turbine subject to failures of several modes. We also examine a number of critical factors, affecting the feasibility of maintenance, especially the dynamic weather conditions, which makes the subsequent modeling and the resulting strategy season-dependent. We formulate the problem as a partially observed Markov decision process with heterogeneous parameters. The model is solved using a backward dynamic programming method, producing a dynamic strategy. We highlight the benefits of the resulting strategy through a case study using data from the wind industry. The case study shows that the optimal policy can be adapted to the operating conditions, choosing the most cost-effective action. Compared with fixed, scheduled maintenances and a static strategy, the dynamic strategy can achieve the considerable improvements in both reliability and costs.

Published in:

Power Systems, IEEE Transactions on  (Volume:25 ,  Issue: 4 )