Cart (Loading....) | Create Account
Close category search window

T-S Fuzzy Maximum Power Point Tracking Control of Solar Power Generation Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chian-Song Chiu ; Dept. of Electr. Eng., Chung-Yuan Christian Univ., Jhongli, Taiwan

This paper presents maximum power point tracking (MPPT) control for stand-alone solar power generation systems via the Takagi-Sugeno (T-S) fuzzy-model-based approach. In detail, we consider a dc/dc buck converter to regulate the output power of the photovoltaic panel array. First, the system is represented by the T-S fuzzy model. Next, in order to reduce the number of measured signals, a T-S fuzzy observer is developed for state feedback. Then, a fuzzy direct MPPT controller is proposed to achieve asymptotic MPPT control, in which the observer and controller gains are obtained by separately solving two sets of linear matrix inequalities. Different from the traditional MPPT approaches, the proposed T-S fuzzy controller directly drives the system to the maximum power point without searching the maximum power point and measuring insolation. Furthermore, when considering disturbance and uncertainty, robust MPPT is guaranteed by advanced gain design. Therefore, the proposed method provides an easier implementation form under strict stability analysis. Finally, the control performance is shown from the numerical simulation and experimental results.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:25 ,  Issue: 4 )

Date of Publication:

Dec. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.