By Topic

The Diagnosability of Petri Net Models Using Minimal Explanations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
George Jiroveanu ; Transelectrica SA, Craiova, Romania ; RenĂ© K. Boel

For a bounded Petri Net model the diagnosability property is usually checked via its regular language represented by the reachability graph RG. However, this is problematic because the computational complexity of the diagnosability test is polynomial in the cardinality of the state space of the model which is typically very large. This limitation can be overcome by using for the diagnosability test an ROF-automaton, with a state space significantly smaller than RG, that generates the same language as RG after projecting out all non-faulty unobservable transitions. ROF is efficiently constructed based on the calculation of the minimal explanations of the fault and of the observable transitions.

Published in:

IEEE Transactions on Automatic Control  (Volume:55 ,  Issue: 7 )