By Topic

2-D Ultrasound Probe Complete Guidance by Visual Servoing Using Image Moments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mebarki, R. ; Centre Rennes-Bretagne Atlantique, IRISA, Rennes, France ; Krupa, Alexandre ; Chaumette, F.

This paper presents a visual-servoing method that is based on 2-D ultrasound (US) images. The main goal is to guide a robot actuating a 2-D US probe in order to reach a desired cross-section image of an object of interest. The method we propose allows the control of both in-plane and out-of-plane probe motions. Its feedback visual features are combinations of moments extracted from the observed image. The exact analytical form of the interaction matrix that relates the image-moments time variation to the probe velocity is developed, and six independent visual features are proposed to control the six degrees of freedom of the robot. In order to endow the system with the capability of automatically interacting with objects of unknown shape, a model-free visual servoing is developed. For that, we propose an efficient online estimation method to identify the parameters involved in the interaction matrix. Results obtained in both simulations and experiments validate the methods presented in this paper and show their robustness to different errors and perturbations, especially those inherent to the noisy US images.

Published in:

Robotics, IEEE Transactions on  (Volume:26 ,  Issue: 2 )