Cart (Loading....) | Create Account
Close category search window
 

Real-Time PID Control Strategy for Maglev Transportation System via Particle Swarm Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rong-Jong Wai ; Dept. of Electr. Eng., Yuan Ze Univ., Chungli, Taiwan ; Jeng-Dao Lee ; Kun-Lun Chuang

This paper focuses on the design of a real-time particle-swarm-optimization-based proportional-integral-differential (PSO-PID) control scheme for the levitated balancing and propulsive positioning of a magnetic-levitation (maglev) transportation system. The dynamic model of a maglev transportation system, including levitated electromagnets and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics, is first constructed. The control objective is to design a real-time PID control methodology via PSO gain selections and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. The effectiveness of the proposed PSO-PID control scheme for the maglev transportation system is verified by numerical simulations and experimental results, and its superiority is indicated in comparison with PSO-PID in previous literature and conventional sliding-mode (SM) control strategies. With the proposed PSO-PID control scheme, the controlled maglev transportation system possesses the advantages of favorable control performance without chattering phenomena in SM control and robustness to uncertainties superior to fixed-gain PSO-PID control.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 2 )

Date of Publication:

Feb. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.