By Topic

Three-Component Model-Based Decomposition for Polarimetric SAR Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wentao An ; Dept. of Electron. Eng., Tsinghua Univ., Beijing, China ; Yi Cui ; Jian Yang

An improved three-component decomposition for polarimetric synthetic aperture radar (SAR) data is proposed in this paper. The reasons for the emergence of negative powers in the Freeman decomposition have been analyzed, and three corresponding improvements are included in the proposed method. First, the deorientation process is applied to the coherency matrix before it is decomposed into three scattering components. Then, the coherency matrix with the maximal polarimetric entropy, i.e., the unit matrix, is used as the new volume-scattering model instead of the original one adopted in the Freeman decomposition. A power constraint is also added to the proposed three-component decomposition. The E-SAR polarimetric data acquired over the Oberpfaffenhofen area in Germany are applied in the experiment. The results show that the pixels with negative powers are totally eliminated by the proposed decomposition, demonstrating the effectiveness of the new model.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 6 )