By Topic

Control Methods of Inverter-Interfaced Distributed Generators in a Microgrid System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Il-Yop Chung ; Florida State Univ., Tallahassee, FL, USA ; Wenxin Liu ; Cartes, D.A. ; Collins, E.G., Jr.
more authors

Microgrids are a new concept for future energy distribution systems that enable renewable energy integration and improved energy management capability. Microgrids consist of multiple distributed generators (DGs) that are usually integrated via power electronic inverters. In order to enhance power quality and power distribution reliability, microgrids need to operate in both grid-connected and island modes. Consequently, microgrids can suffer performance degradation as the operating conditions vary due to abrupt mode changes and variations in bus voltages and system frequency. This paper presents controller design and optimization methods to stably coordinate multiple inverter-interfaced DGs and to robustly control individual interface inverters against voltage and frequency disturbances. Droop-control concepts are used as system-level multiple DG coordination controllers, and control theory is applied to device-level inverter controllers. Optimal control parameters are obtained by particle-swarm-optimization algorithms, and the control performance is verified via simulation studies.

Published in:

Industry Applications, IEEE Transactions on  (Volume:46 ,  Issue: 3 )