By Topic

Incremental Embedding and Learning in the Local Discriminant Subspace With Application to Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Miao Cheng ; Dept. of Comput. Sci., Chongqing Univ., Chongqing, China ; Bin Fang ; Yuan Yan Tang ; Taiping Zhang
more authors

Dimensionality reduction and incremental learning have recently received broad attention in many applications of data mining, pattern recognition, and information retrieval. Inspired by the concept of manifold learning, many discriminant embedding techniques have been introduced to seek low-dimensional discriminative manifold structure in the high-dimensional space for feature reduction and classification. However, such graph-embedding framework-based subspace methods usually confront two limitations: (1) since there is no available updating rule for local discriminant analysis with the additive data, it is difficult to design incremental learning algorithm and (2) the small sample size (SSS) problem usually occurs if the original data exist in very high-dimensional space. To overcome these problems, this paper devises a supervised learning method, called local discriminant subspace embedding (LDSE), to extract discriminative features. Then, the incremental-mode algorithm, incremental LDSE (ILDSE), is proposed to learn the local discriminant subspace with the newly inserted data, which applies incremental learning extension to the batch LDSE algorithm by employing the idea of singular value-decomposition (SVD) updating algorithm. Furthermore, the SSS problem is avoided in our method for the high-dimensional data and the benchmark incremental learning experiments on face recognition show that ILDSE bears much less computational cost compared with the batch algorithm.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:40 ,  Issue: 5 )
Biometrics Compendium, IEEE