By Topic

A bidirectional associative memory based on optimal linear associative memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zheng-Ou Wang ; Inst. of Syst. Eng., Tianjin Univ., China

A bidirectional associative memory is presented. Unlike many existing BAM algorithms, the presented BAM uses an optimal associative memory matrix in place of the standard Hebbian or quasi correlation matrix. The optimal associative memory matrix is determined by using only simple correlation learning, requiring no pseudoinverse calculation. Guaranteed recall of all training pairs is ensured by the present BAM. The designs of a linear BAM (LBAM) and a nonlinear BAM (NBAM) are given, and the stability and other performances of the BAMs are analyzed. The introduction of a nonlinear characteristic enhances considerably the ability of the BAM to suppress the noises occurring in the output pattern, and reduces largely the spurious memories, and therefore improves greatly the recall performance of the BAM. Due to the nonsymmetry of the connection matrix of the network, the capacities of the present BAMs are far higher than that of the existing BAMs. Excellent performances of the present BAMs are shown by simulation results

Published in:

Computers, IEEE Transactions on  (Volume:45 ,  Issue: 10 )