Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Layer bargaining: multicast layered video over wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhengye Liu ; Polytech. Inst. of New York Univ., Brooklyn, NY, USA ; Zhenyu Wu ; Pei Liu ; Hang Liu
more authors

Wireless video multicast efficiently streams video to multiple receivers. When designing a wireless video multicast system, the system must be able to handle (i) packet losses induced by the underlying wireless channel and (ii) receiver heterogeneity in channel condition in a multicast group. We propose Layer Bargaining, a wireless video multicast design in infrastructure-based wireless networks that simultaneously addresses both of the above problems. To combat packet losses and improve received video quality, we propose a layered hybrid ARQ scheme that provides unequal protection to layered video by exploring light-weight feedback. To deal with receiver heterogeneity, we propose a framework based on Nash bargaining game for operating point selection in a multicast group. Our simulation results show that the layered hybrid ARQ scheme significantly outperforms the conventional hybrid ARQ scheme with single layer video and the layered FEC scheme. The results also show that the game-based operating point selection provides a high overall system performance while facilitating fairness among receivers. We carefully examine the overhead and the computational complexity of our proposed schemes, through both theoretical analysis and OPNET simulation/experiment, and show that Layer Bargaining is practically feasible under representative settings.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:28 ,  Issue: 3 )