By Topic

Cross-layer optimization for streaming scalable video over fading wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We present a cross-layer design of transmitting scalable video streams from a base station to multiple clients over a shared fading wireless network by jointly considering the application layer information and the wireless channel conditions. We first design a long-term resource allocation algorithm that determines the optimal wireless scheduling policy in order to maximize the weighted sum of average video quality of all streams. We prove that our algorithm achieves the global optimum even though the problem is not concave in the parameter space. We then devise two on-line scheduling algorithms that utilize the results obtained by the long-term resource allocation algorithm for user and packet scheduling as well as video frame dropping strategy. We compare our schemes with existing video scheduling and buffer management schemes in the literature and simulation results show our proposed schemes significantly outperform existing ones.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:28 ,  Issue: 3 )