Cart (Loading....) | Create Account
Close category search window
 

Strong dependence of spin dynamics on the orientation of an external magnetic field for InSb and InAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Litvinenko, K.L. ; Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, United Kingdom ; Leontiadou, M.A. ; Li, Juerong ; Clowes, S.K.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3337111 

Electron spin relaxation times have been measured in InSb and InAs epilayers in a moderate (<4 T) external magnetic field. A strong and opposite field dependence of the spin lifetime was observed for longitudinal (Faraday) and transverse (Voigt) configuration. In the Faraday configuration the spin lifetime increases because the D’yakonov–Perel’ dephasing process is suppressed. At the high field limit the Elliot–Yafet spin flip relaxation process dominates, enabling its direct determination. Conversely, as predicted theoretically for narrow band gap semiconductors, an additional efficient spin dephasing mechanism dominates in the Voigt configuration significantly decreasing the electron spin lifetime with increasing field.

Published in:

Applied Physics Letters  (Volume:96 ,  Issue: 11 )

Date of Publication:

Mar 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.