Cart (Loading....) | Create Account
Close category search window
 

Defect-Tolerant Design and Optimization of a Digital Microfluidic Biochip for Protein Crystallization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tao Xu ; Cisco Syst. Inc., Research Triangle Park, NC, USA ; Chakrabarty, K. ; Pamula, V.K.

Protein crystallization is a commonly used technique for protein analysis and subsequent drug design. It predicts the 3-D arrangement of the constituent amino acids, which in turn indicates the specific biological function of a protein. Protein crystallization experiments are typically carried out in well-plates in the laboratory. As a result, these experiments are slow, expensive, and error-prone due to the need for repeated human intervention. Recently, droplet-based ¿digital¿ microfluidics have been used for executing protein assays on a chip. Protein samples in the form of nanoliter-volume droplets are manipulated using the principle of electrowetting-on-dielectric. We present the design of a multi-well-plate microfluidic biochip for protein crystallization; this biochip can transfer protein samples, prepare candidate solutions, and carry out crystallization automatically. To reduce the manufacturing cost of such devices, we present an efficient algorithm to generate a pin-assignment plan for the proposed design. The resulting biochip enables control of a large number of on-chip electrodes using only a small number of pins. Based on the pin-constrained chip design, we present an efficient shuttle-passenger-like droplet manipulation method and test procedure to achieve high-throughput and defect-tolerant well loading.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:29 ,  Issue: 4 )

Date of Publication:

April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.