Cart (Loading....) | Create Account
Close category search window
 

Co-Optimization of Circuits, Layout and Lithography for Predictive Technology Scaling Beyond Gratings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jhaveri, T. ; PDF Solutions, Pittsburgh, PA, USA ; Rovner, V. ; Liebmann, Lars ; Pileggi, L.
more authors

The financial backbone of the semiconductor industry is based on doubling the functional density of integrated circuits every two years at fixed wafer costs and die yields. The increasing demands for 'computational' rather than 'physical' lithography to achieve the aggressive density targets, along with the complex device-engineering solutions needed to maintain the power density objectives, have caused a rapid escalation in systematic yield limiters that threaten scaling. Specifically, the traditional contract between design and manufacturing based solely on design rules is no longer sufficient to guarantee functional silicon and instead requires a convoluted set of restrictions that force complex modifications to the already costly design flows. In this paper, we claim that a far superior result can be achieved by moving the design-to-manufacturing interface from design rules to a higher level of abstraction based on a defined set of pre-characterized layout templates. We will demonstrate how this methodology can simplify optical proximity correction and lithography processes for sub-32 nm technology nodes, along with various digital block design examples for synthesized intellectual property (IP) cores. Furthermore, with a cost-per-good-die analysis we will show that this methodology will extend economical scaling to sub-32 nm technology nodes.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:29 ,  Issue: 4 )

Date of Publication:

April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.