By Topic

A combined series-parallel active filter system implementation using generalized non-active power theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mehmet Ucar ; Kocaeli University, Faculty of Technology, 41380, Umuttepe, Kocaeli, Turkey ; Sule Ozdemir ; Engin Ozdemir

In this paper, a generalized non-active power theory based control strategy is implemented in a 3-phase 4-wire combined series-parallel active filter (CSPAF) system for periodic and non-periodic waveforms compensation. The CSPAF system consists of a series active filter (SAF) and a parallel active filter (PAF) combination connected a common dc-link. The generalized non-active power theory is valid for single-phase and multi-phase systems, as well as periodic and non-periodic waveforms. The theory was applied in previous studies for current control in the PAF. In this study the theory is used for current and voltage control in the CSPAF system. The CSPAF system is simulated in Matlab/Simulink and an experimental setup is also built, so that different cases can be studied in simulations or experiments. The simulation and experimental results verify that the generalized non-active power theory is suitable for periodic and non-periodic current and voltage waveforms compensation in the CSPAF system.

Published in:

Applied Power Electronics Conference and Exposition (APEC), 2010 Twenty-Fifth Annual IEEE

Date of Conference:

21-25 Feb. 2010