By Topic

Supporting load balancing for distributed data-intensive applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Leonid Glimcher ; Department of Computer Science and Engineering, Ohio State University, Columbus OH 43210 ; Vignesh T. Ravi ; Gagan Agrawal

In data-intensive computing, an important problem that has received relatively little attention is of transparent processing of data stored in remote data repositories. Interesting load balancing considerations arise for these scenarios. Particularly, based on where data is generated and how it is shared, a dataset of interest can be divided across multiple data repositories, which may be geographically distributed and the data may be partitioned in a number of ways. This paper focuses on enabling such distributed processing of data from distributed resources. We have developed a load balancing algorithm, which minimizes the total time spent on processing the data. We consider weighted sum of two factors, a load balancing factor and a term that captures the amount of time spent by processing nodes waiting for the data. Our solutions have been implemented and evaluated in the context of FREERIDE-G (FRamework for Rapid Implementation of Datamining Engines in Grid). We have extensively evaluated our techniques using two data-intensive applications.

Published in:

2009 International Conference on High Performance Computing (HiPC)

Date of Conference:

16-19 Dec. 2009