Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A Unifying Approach to Interference Modeling for Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Boche, H. ; Fraunhofer Inst. for Telecommun., HeinrichHertz-Inst., Berlin, Germany ; Schubert, M.

The paper addresses the problem of interference modeling for wireless networks. Two axiomatic approaches are known from the literature: 1) ??standard interference functions?? proposed by Yates in 1995, and 2) ??general interference functions?? proposed by the authors in their previous work. In this paper, both frameworks are thoroughly analyzed and compared. It is shown that every function from framework 1) can be expressed in terms of framework 2). This means that recent structure results for convex interference functions, which were derived for 2), can also be applied to 1). The results provide a bridge between the frameworks 1) and 2), which were studied separately in the literature. Also, new structure results are shown in this paper. For the example of QoS balancing, it is shown that analyzing the structure of interference functions can lead to interesting algorithmic opportunities. The results are potentially useful for the development of physical-layer aware resource allocation algorithms.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 6 )