By Topic

Joint Rate Allocation for Multiprogram Video Coding Using FGS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu Wang ; School of Electrical and Electronic Engineering, Nanyang Technological University, Institute for Infocomm Research, SingaporeSingapore ; Lap-Pui Chau ; Kim-Hui Yap

In this paper, we address the problem of joint rate allocation for scalable video coding (SVC) of multiple video programs using the fine granularity scalability (FGS), which is not specified by any current H.264/AVC profile. Most of the existing approaches are based on non-SVC platforms, where computationally expensive encoding or transcoding is demanded to adjust the bit-rate of each video program. Different from all these works, we develop a new statistical multiplexing system, where FGS is applied to compress the video programs. First, we propose an efficient look-ahead approach to distribute the base layer coding bit-rate. Second, a piecewise linear model is applied to accurately estimate the rate-distortion relationship in the FGS layers. Based on this model, a novel algorithm is designed to dynamically allocate the available bandwidth to different programs for rate adaptation in order to minimize the variation of quality of different video programs. Experiments are carried out to verify the performance of the proposed scheme by comparing it with existing methods. The results demonstrate the superiority of the proposed scheme and the quality difference between different programs is greatly reduced.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:20 ,  Issue: 6 )