By Topic

A Lossless Embedded Compression Using Significant Bit Truncation for HD Video Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jaemoon Kim ; Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea ; Chong-Min Kyung

Increasing the image size of a video sequence aggravates the memory bandwidth problem of a video coding system. Despite many embedded compression (EC) algorithms proposed to overcome this problem, no lossless EC algorithm able to handle high-definition (HD) size video sequences has been proposed thus far. In this paper, a lossless EC algorithm for HD video sequences and related hardware architecture is proposed. The proposed algorithm consists of two steps. The first is a hierarchical prediction method based on pixel averaging and copying. The second step involves significant bit truncation (SBT) which encodes prediction errors in a group with the same number of bits so that the multiple prediction errors are decoded in a clock cycle. The theoretical lower bound of the compression ratio of the SBT coding was also derived. Experimental results have shown a 60% reduction of memory bandwidth on average. Hardware implementation results have shown that a throughput of 14.2 pixels/cycle can be achieved with 36 K gates, which is sufficient to handle HD-size video sequences in real time.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:20 ,  Issue: 6 )