By Topic

Interactive, Evolutionary Search in Upstream Object-Oriented Class Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Christopher L. Simons ; University of the West of England, Frenchay ; Ian C. Parmee ; Rhys Gwynllyw

Although much evidence exists to suggest that early life cycle software engineering design is a difficult task for software engineers to perform, current computational tool support for software engineers is limited. To address this limitation, interactive search-based approaches using evolutionary computation and software agents are investigated in experimental upstream design episodes for two example design domains. Results show that interactive evolutionary search, supported by software agents, appears highly promising. As an open system, search is steered jointly by designer preferences and software agents. Directly traceable to the design problem domain, a mass of useful and interesting class designs is arrived at which may be visualized by the designer with quantitative measures of structural integrity, such as design coupling and class cohesion. The class designs are found to be of equivalent or better coupling and cohesion when compared to a manual class design for the example design domains, and by exploiting concurrent execution, the runtime performance of the software agents is highly favorable.

Published in:

IEEE Transactions on Software Engineering  (Volume:36 ,  Issue: 6 )