By Topic

Global Ridge Orientation Modeling for Partial Fingerprint Identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yi Wang ; Sch. of Math. & Stat., Univ. of New South Wales, Sydney, NSW, Australia ; Jiankun Hu

Identifying incomplete or partial fingerprints from a large fingerprint database remains a difficult challenge today. Existing studies on partial fingerprints focus on one-to-one matching using local ridge details. In this paper, we investigate the problem of retrieving candidate lists for matching partial fingerprints by exploiting global topological features. Specifically, we propose an analytical approach for reconstructing the global topology representation from a partial fingerprint. First, we present an inverse orientation model for describing the reconstruction problem. Then, we provide a general expression for all valid solutions to the inverse model. This allows us to preserve data fidelity in the existing segments while exploring missing structures in the unknown parts. We have further developed algorithms for estimating the missing orientation structures based on some a priori knowledge of ridge topology features. Our statistical experiments show that our proposed model-based approach can effectively reduce the number of candidates for pair-wised fingerprint matching, and thus significantly improve the system retrieval performance for partial fingerprint identification.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 1 )
Biometrics Compendium, IEEE