By Topic

Multiperson Visual Focus of Attention from Head Pose and Meeting Contextual Cues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ba, S.O. ; LabSTICC, Ecole Nat. des Telecommun. de Bretagne, Technopole Brest-Iroise, France ; Odobez, J.

This paper introduces a novel contextual model for the recognition of people's visual focus of attention (VFOA) in meetings from audio-visual perceptual cues. More specifically, instead of independently recognizing the VFOA of each meeting participant from his own head pose, we propose to jointly recognize the participants' visual attention in order to introduce context-dependent interaction models that relate to group activity and the social dynamics of communication. Meeting contextual information is represented by the location of people, conversational events identifying floor holding patterns, and a presentation activity variable. By modeling the interactions between the different contexts and their combined and sometimes contradictory impact on the gazing behavior, our model allows us to handle VFOA recognition in difficult task-based meetings involving artifacts, presentations, and moving people. We validated our model through rigorous evaluation on a publicly available and challenging data set of 12 real meetings (5 hours of data). The results demonstrated that the integration of the presentation and conversation dynamical context using our model can lead to significant performance improvements.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 1 )