Cart (Loading....) | Create Account
Close category search window
 

Turbo Segmentation of Textured Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lehmann, F. ; Dept. CITI, TELECOM SudParis, Evry, France

We consider the problem of semi-supervised segmentation of textured images. Existing model-based approaches model the intensity field of textured images as a Gauss-Markov random field to take into account the local spatial dependencies between the pixels. Classical Bayesian segmentation consists of also modeling the label field as a Markov random field to ensure that neighboring pixels correspond to the same texture class with high probability. Well-known relaxation techniques are available which find the optimal label field with respect to the maximum a posteriori or the maximum posterior mode criterion. But, these techniques are usually computationally intensive because they require a large number of iterations to converge. In this paper, we propose a new Bayesian framework by modeling two-dimensional textured images as the concatenation of two one-dimensional hidden Markov autoregressive models for the lines and the columns, respectively. A segmentation algorithm, which is similar to turbo decoding in the context of error-correcting codes, is obtained based on a factor graph approach. The proposed method estimates the unknown parameters using the Expectation-Maximization algorithm.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.