By Topic

TDMA Scheduling with Optimized Energy Efficiency and Minimum Delay in Clustered Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liqi Shi ; Dept. of Electr. & Comput. Eng., Univ. of Calgary, Calgary, AB, Canada ; Fapojuwo, A.

In this paper, we propose a solution to the scheduling problem in clustered wireless sensor networks (WSNs). The objective is to provide network-wide optimized time division multiple access (TDMA) schedules that can achieve high power efficiency, zero conflict, and reduced end-to-end delay. To achieve this objective, we first build a nonlinear cross-layer optimization model involving the network, medium access control (MAC), and physical layers, which aims at reducing the overall energy consumption. We solve this problem by transforming the model into two simpler subproblems. Based on the network-wide flow distribution calculated from the optimization model and transmission power on every link, we then propose an algorithm for deriving the TDMA schedules, utilizing the slot reuse concept to achieve minimum TDMA frame length. Numerical results reveal that our proposed solution reduces the energy consumption and delay significantly, while simultaneously satisfying a specified reliability objective.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:9 ,  Issue: 7 )