By Topic

Channel Assignment for Multihop Cellular Networks: Minimum Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tam, Y.H. ; Sch. of Comput., Queen''s Univ., Kingston, ON, Canada ; Benkoczi, R. ; Hassanein, H.S. ; Akl, S.G.

Multihop cellular networks (MCNs) enhance the capacity and coverage and alleviate the dead-spot and hot-spot problems of cellular networks. They also allow faster and cheaper deployment of cellular networks. A fundamental issue of these networks is packet delay because multihop relaying for signals is involved. An effective channel assignment is the key to reducing delay. In this paper, we propose an optimal and a heuristic channel assignment scheme, called OCA and minimum slot waiting first (MSWF), respectively, for a time division duplex (TDD) wideband code division multiple access (W-CDMA) MCN. OCA provides an optimal solution in minimizing packet delay and can be used as an unbiased or benchmark tool for comparison among different network conditions or networking schemes. However, OCA is computationally expensive and, thus, inefficient for large real-time channel assignment problem. In this case, MSWF is more appropriate. Simulation results show that MSWF achieves on average 95 percent of the delay performance of OCA and is effective in achieving high throughput and low packet delay in conditions of different cell sizes.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:9 ,  Issue: 7 )