By Topic

Mobile Scheduling for Spatiotemporal Detection in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Guoliang Xing ; Dept. of Comput. Sci. & Eng., Michigan State Univ., East Lansing, MI, USA ; Jianping Wang ; Zhaohui Yuan ; Rui Tan
more authors

Wireless sensor networks (WSNs) deployed for mission-critical applications face the fundamental challenge of meeting stringent spatiotemporal performance requirements using nodes with limited sensing capacity. Although advance network planning and dense node deployment may initially achieve the required performance, they often fail to adapt to the unpredictability and variability of physical reality. This paper explores efficient use of mobile sensors to address limitations of static WSNs for target detection. We propose a data-fusion-based detection model that enables static and mobile sensors to effectively collaborate in target detection. An optimal sensor movement scheduling algorithm is developed to minimize the total moving distance of sensors while achieving a set of spatiotemporal performance requirements including high detection probability, low system false alarm rate, and bounded detection delay. The effectiveness of our approach is validated by extensive simulations based on real data traces collected by 23 sensor nodes.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:21 ,  Issue: 12 )