By Topic

Energy-efficient mobile data collection in Wireless Sensor Networks with delay reduction using wireless communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kumar, A.K. ; Dept. of Comput. Sci. & Eng., Indian Inst. of Technol., Chennai, India ; Sivalingam, K.M.

In a Wireless Sensor Network (WSN), battery power is a limited resource on the sensor nodes. Hence, the amount of power consumption by the nodes determines the node and network lifetime. This in turn has an impact on the connectivity and coverage of the network. One way to reduce power consumed is to use a special Mobile Data Collector (MDC) for data gathering, instead of multi-hop data transmission to the sink. The MDC collects the data from the nodes and transfers it to the sink. Various kinds of MDC approaches have been explored for different assumptions and constraints. But in all the models proposed, the data latency is usually high, due to the slow speed of the mobile nodes. In this paper, we propose a new model of mobile data collection that reduces the data latency significantly. Using a combination of a new touring strategy based on clustering and a data collection mechanism based on wireless communication, we show that the delay can be reduced significantly without compromising on the advantages of MDC based approach. Using extensive simulation studies, we analyze the performance of the proposed approach and show that the packet delay reduces by more than half when compared to other existing approaches.

Published in:

Communication Systems and Networks (COMSNETS), 2010 Second International Conference on

Date of Conference:

5-9 Jan. 2010