By Topic

SMT-Based Bounded Model Checking for Embedded ANSI-C Software

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cordeiro, L. ; Univ. of Southampton, Southampton, UK ; Fischer, B. ; Marques-Silva, J.

Propositional bounded model checking has been applied successfully to verify embedded software but is limited by the increasing propositional formula size and the loss of structure during the translation. These limitations can be reduced by encoding word-level information in theories richer than propositional logic and using SMT solvers for the generated verification conditions. Here, we investigate the application of different SMT solvers to the verification of embedded software written in ANSI-C. We have extended the encodings from previous SMT-based bounded model checkers to provide more accurate support for variables of finite bit width, bit-vector operations, arrays, structures, unions and pointers. We have integrated the CVC3, Boolector, and Z3 solvers with the CBMC front-end and evaluated them using both standard software model checking benchmarks and typical embedded software applications from telecommunications, control systems, and medical devices. The experiments show that our approach can analyze larger problems and substantially reduce the verification time.

Published in:

Automated Software Engineering, 2009. ASE '09. 24th IEEE/ACM International Conference on

Date of Conference:

16-20 Nov. 2009