By Topic

A Divergence-Oriented Approach to Adaptive Random Testing of Java Programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yu Lin ; Sch. of Software, Shanghai Jiao Tong Univ., Shanghai, China ; Xucheng Tang ; Yuting Chen ; Jianjun Zhao

Adaptive Random Testing (ART) is a testing technique which is based on an observation that a test input usually has the same potential as its neighbors in detection of a specific program defect. ART helps to improve the efficiency of random testing in that test inputs are selected evenly across the input spaces. However, the application of ART to object-oriented programs (e.g., C++ and Java) still faces a strong challenge in that the input spaces of object-oriented programs are usually high dimensional, and therefore an even distribution of test inputs in a space as such is difficult to achieve. In this paper, we propose a divergence-oriented approach to adaptive random testing of Java programs to address this challenge. The essential idea of this approach is to prepare for the tested program a pool of test inputs each of which is of significant difference from the others, and then to use the ART technique to select test inputs from the pool for the tested program. We also develop a tool called ARTGen to support this testing approach, and conduct experiment to test several popular open-source Java packages to assess the effectiveness of the approach. The experimental result shows that our approach can generate test cases with high quality.

Published in:

Automated Software Engineering, 2009. ASE '09. 24th IEEE/ACM International Conference on

Date of Conference:

16-20 Nov. 2009