By Topic

Linear Full-Wave-Interaction Analysis of a Gyrotron-Traveling-Wave-Tube Amplifier Based on a Lossy Dielectric-Lined Circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chao-Hai Du ; Key Lab. of High Power Microwave Sources & Technol., Grad. Univ., Beijing, China ; Pu-Kun Liu

A lossy dielectric-lined (DL) waveguide is inherent with excellent mode-selective-propagation ability. A millimeter-wave gyrotron-traveling-wave (gyro-TWT) amplifier based on such kind of waveguide is characterized with high stability. In this paper, the analytical expressions of the field components of the operating modes in the DL waveguide are obtained from the eigenequation, and the linear theory of electron-cyclotron-maser (ECM) instability in the DL waveguide is developed by employing the full-wave-interaction method. This linear theory takes the waveguide structure and the characteristics of the lossy dielectric material into consideration. It is capable of accurately calculating the ECM instability between a cyclotron harmonic and a circular polarized mode, as well as effectively predicting the linear stability of the DL-waveguide-based interaction system. The validity of the linear theory is verified via comparing with results obtained using a coherently developed self-consistent nonlinear theory. Numerical calculation reveals a series of interesting results. This paper provides specific guidance for future designs of millimeter-wave lossy dielectric-loaded gyro-TWTs.

Published in:

Plasma Science, IEEE Transactions on  (Volume:38 ,  Issue: 6 )