By Topic

An Efficient Numerical Method for General L_{p} Regularization in Fluorescence Molecular Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jean-Charles Baritaux ; Swiss Federal Institute of Technology of Lausanne ; Kai Hassler ; Michael Unser

Reconstruction algorithms for fluorescence tomography have to address two crucial issues: 1) the ill-posedness of the reconstruction problem, 2) the large scale of numerical problems arising from imaging of 3-D samples. Our contribution is the design and implementation of a reconstruction algorithm that incorporates general Lp regularization (p ¿¿ 1). The originality of this work lies in the application of general Lp constraints to fluorescence tomography, combined with an efficient matrix-free strategy that enables the algorithm to deal with large reconstruction problems at reduced memory and computational costs. In the experimental part, we specialize the application of the algorithm to the case of sparsity promoting constraints (L 1). We validate the adequacy of L 1 regularization for the investigation of phenomena that are well described by a sparse model, using data acquired during phantom experiments.

Published in:

IEEE Transactions on Medical Imaging  (Volume:29 ,  Issue: 4 )