Cart (Loading....) | Create Account
Close category search window
 

Robust Web Image/Video Super-Resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhiwei Xiong ; Univ. of Sci. & Technol. of China, Hefei, China ; Xiaoyan Sun ; Feng Wu

This paper proposes a robust single-image super-resolution method for enlarging low quality web image/video degraded by downsampling and compression. To simultaneously improve the resolution and perceptual quality of such web image/video, we bring forward a practical solution which combines adaptive regularization and learning-based super-resolution. The contribution of this work is twofold. First, we propose to analyze the image energy change characteristics during the iterative regularization process, i.e., the energy change ratio between primitive (e.g., edges, ridges and corners) and nonprimitive fields. Based on the revealed convergence property of the energy change ratio, appropriate regularization strength can then be determined to well balance compression artifacts removal and primitive components preservation. Second, we verify that this adaptive regularization can steadily and greatly improve the pair matching accuracy in learning-based super-resolution. Consequently, their combination effectively eliminates the quantization noise and meanwhile faithfully compensates the missing high-frequency details, yielding robust super-resolution performance in the compression scenario. Experimental results demonstrate that our solution produces visually pleasing enlargements for various web images/videos.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 8 )

Date of Publication:

Aug. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.