Cart (Loading....) | Create Account
Close category search window
 

Multivariate Image Segmentation Using Semantic Region Growing With Adaptive Edge Penalty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Multivariate image segmentation is a challenging task, influenced by large intraclass variation that reduces class distinguishability as well as increased feature space sparseness and solution space complexity that impose computational cost and degrade algorithmic robustness. To deal with these problems, a Markov random field (MRF) based multivariate segmentation algorithm called “multivariate iterative region growing using semantics” (MIRGS) is presented. In MIRGS, the impact of intraclass variation and computational cost are reduced using the MRF spatial context model incorporated with adaptive edge penalty and applied to regions. Semantic region growing starting from watershed over-segmentation and performed alternatively with segmentation gradually reduces the solution space size, which improves segmentation effectiveness. As a multivariate iterative algorithm, MIRGS is highly sensitive to initial conditions. To suppress initialization sensitivity, it employs a region-level k -means (RKM) based initialization method, which consistently provides accurate initial conditions at low computational cost. Experiments show the superiority of RKM relative to two commonly used initialization methods. Segmentation tests on a variety of synthetic and natural multivariate images demonstrate that MIRGS consistently outperforms three other published algorithms.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 8 )

Date of Publication:

Aug. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.