Cart (Loading....) | Create Account
Close category search window
 

A Data-Driven Approach to A Priori SNR Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Suhadi, S. ; Inst. for Commun. Technol., Tech. Univ. Braunschweig, Braunschweig, Germany ; Last, C. ; Fingscheidt, T.

The a priori signal-to-noise ratio (SNR) plays an important role in many speech enhancement algorithms. In this paper, we present a data-driven approach to a priori SNR estimation. It may be used with a wide range of speech enhancement techniques, such as, e.g., the minimum mean square error (MMSE) (log) spectral amplitude estimator, the super Gaussian joint maximum a posteriori (JMAP) estimator, or the Wiener filter. The proposed SNR estimator employs two trained artificial neural networks, one for speech presence, one for speech absence. The classical decision-directed a priori SNR estimator by Ephraim and Malah is broken down into its two additive components, which now represent the two input signals to the neural networks. Both output nodes are combined to represent the new a priori SNR estimate. As an alternative to the neural networks, also simple lookup tables are investigated. Employment of these data-driven nonlinear a priori SNR estimators reduces speech distortion, particularly in speech onset, while retaining a high level of noise attenuation in speech absence.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.