By Topic

A hot hole-induced low-level leakage current in thin silicon dioxide films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Matsukawa, Naohiro ; Semiconductor Quality Assurance Dept., Toshiba Corp., Kawasaki, Japan ; Yamada, S. ; Amemiya, K. ; Hazama, H.

A new kind of stress-induced low-level leakage current (LLLC) in thin silicon dioxide is reported. It is observed after the stress of hot hole injection at the gate edge. Since voltage dependence of this new kind of LLLC is steeper than that of conventional FN stress-induced LLLC, each conduction mechanism may be different. This LLLC is reduced by both hot electron injection and UV irradiation. These reductions are never observed in FN stress-induced LLLC. The most promising mechanism is sequential tunneling via trapped holes

Published in:

Electron Devices, IEEE Transactions on  (Volume:43 ,  Issue: 11 )