Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Terrain-Aware Path Guided Mobile Robot Teleoperation in Virtual and Real Space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jarvis, R. ; Intell. Robot. Res. Centre, Monash Univ., Melbourne, VIC, Australia

This paper concerns the development of a force feedback enhanced teleoperation system for outdoor robotic vehicles navigating in rough terrain where true-colour 3D virtual world models of the working environment, created from laser and colour image scans collected offline, can be explored by walk-throughs both before and during the robot navigation mission itself. In other words, the physical mission planned can be partially rehearsed in cyberspace. Further, during a mission, the location and orientation of the vehicle are continually determined and global collision-free paths to selected goal locations made available as advice to the operator, who can follow or ignore such advice at will. Live (real-time) 3D laser range data also provides an up-to-date scan of the volume immediately surrounding the vehicle as it moves so that dynamic obstacles can be avoided. Local terrain-roughness is taken into account in the provision of local collision-free paths, the sub-goals of which, are operator determined. This live range data is matched with the pre-scanned range data to calculate the accurate robot vehicle localisation (position and orientation) which is provided continuously during the navigation mission. A force feedback 3D joystick reflects terrain roughness as a vibration in one axis and the other two axes are used to provide a 2D force to attract the operator towards following the local optimal collision-free path, but this attraction can be easily overridden by the operator. The instrumentation and methodologies used are presented, together with some preliminary experimental results.

Published in:

Advances in Computer-Human Interactions, 2010. ACHI '10. Third International Conference on

Date of Conference:

10-15 Feb. 2010