By Topic

Compartmental rule-based modeling of biochemical systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Harris, L.A. ; Sch. of Med., Dept. of Comput. Biol., Univ. of Pittsburgh, Pittsburgh, PA, USA ; Hogg, J.S. ; Faeder, J.R.

Rule-based modeling is an approach to modeling biochemical kinetics in which proteins and other biological components are modeled as structured objects and their interactions are governed by rules that specify the conditions under which reactions occur. BioNetGen is an open-source platform that provides a simple yet expressive language for rule-based modeling (BNGL). In this paper we describe compartmental BNGL (cBNGL), which extends BNGL to enable explicit modeling of the compartmental organization of the cell and its effects on system dynamics. We show that by making localization a queryable attribute of both molecules and species and introducing appropriate volumetric scaling of reaction rates, the effects of compartmentalization can be naturally modeled using rules. These properties enable the construction of new rule semantics that include both universal rules, those defining interactions that can take place in any compartment in the system, and transport rules, which enable movement of molecular complexes between compartments.

Published in:

Simulation Conference (WSC), Proceedings of the 2009 Winter

Date of Conference:

13-16 Dec. 2009