By Topic

Quantifying supply chain disruption risk using Monte Carlo and discrete-event simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Amanda J. Schmitt ; Center for Transportation and Logistics, Massachusetts Institute of Technology, Cambridge, MA 02142, USA ; Mahender Singh

We present a model constructed for a large consumer products company to assess their vulnerability to disruption risk and quantify its impact on customer service. Risk profiles for the locations and connections in the supply chain are developed using Monte Carlo simulation, and the flow of material and network interactions are modeled using discrete-event simulation. Capturing both the risk profiles and material flow with simulation allows for a clear view of the impact of disruptions on the system. We also model various strategies for coping with the risk in the system in order to maintain product availability to the customer. We discuss the dynamic nature of risk in the network and the importance of proactive planning to mitigate and recover from disruptions.

Published in:

Proceedings of the 2009 Winter Simulation Conference (WSC)

Date of Conference:

13-16 Dec. 2009