By Topic

Optimal distributed t-resilient election in complete networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Itai, Alon ; Dept. of Comput. Sci., Technion, Haifa, Israel ; Kutten, S. ; Wolfstahl, Y. ; Zaks, S.

The problem of distributed leader election in an asynchronous complete network, in the presence of faults that occurred prior to the execution of the election algorithm, is discussed. Failures of this type are encountered, for example, during a recovery from a crash in the network. For a network with n processors, k of which start the algorithm that uses at most O(n log k +n+kt) messages is presented and shown to be optimal. An optimal algorithm for the case where the identities of the neighbors are known is also presented. It is noted that the order of the message complexity of a t-resilient algorithm is not always higher than that of a nonresilient one. The t-resilient algorithm is a systematic modification of an existing algorithm for a fault-free network

Published in:

Software Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 4 )