By Topic

On the scalability and dynamic load balancing of parallel Verilog simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Meraji, S. ; Sch. of Comput. Sci., McGill Univ., Montreal, QC, Canada ; Wei Zhang ; Tropper, C.

As a consequence of Moore's law, the size of integrated circuits has grown extensively, resulting in simulation becoming the major bottleneck in the circuit design process. In this paper, we examine the performance of a parallel Verilog simulator on large, real designs. As previous work has made use of either relatively small benchmarks or synthetic circuits, the use of these circuits is far more realistic. We develop a parser for Verilog files enabling us to simulate in parallel all synthesizable Verilog circuits. We utilize four circuits as our test benches; the LEON Processor, the OpenSparc T2 processor and two Viterbi decoder circuits. We observed 4,000,000 events per second on 32 processors for the Viterbi decoder with 800k gates. A dynamic load balancing approach is also developed which uses a combination of centralized and distributed control in order to accommodate its use for large circuits.

Published in:

Simulation Conference (WSC), Proceedings of the 2009 Winter

Date of Conference:

13-16 Dec. 2009