By Topic

Low-Complexity Soft-Decoding Algorithms for Reed–Solomon Codes—Part I: An Algebraic Soft-In Hard-Out Chase Decoder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jason Bellorado ; Link-A-Media Devices, Santa Clara ; Aleksandar Kavcic

In this paper, we present an algebraic methodology for implementing low-complexity, Chase-type, decoding of Reed-Solomon (RS) codes of length n . In such, a set of 2 ¿¿ test-vectors that are equivalent on all except ¿¿ ¿¿ n coordinate positions is first produced. The similarity of the test-vectors is utilized to reduce the complexity of interpolation, the process of constructing a set of polynomials that obey constraints imposed by each test-vector. By first considering the equivalent indices, a polynomial common to all test-vectors is constructed. The required set of polynomials is then produced by interpolating the final ¿¿ dissimilar indices utilizing a binary-tree structure. In the second decoding step (factorization) a candidate message is extracted from each interpolation polynomial such that one may be chosen as the decoded message. Although an expression for the direct evaluation of each candidate message is provided, carrying out this computation for each polynomial is extremely complex. Thus, a novel, reduced-complexity, methodology is also given. Although suboptimal, simulation results affirm that the loss in performance incurred by this procedure is decreasing with increasing code length n, and negligible for long (n > 100) codes. Significant coding gains are shown to be achievable over traditional hard-in hard-out decoding procedures (e.g., Berlekamp-Massey) at an equivalent (and, in some cases, lower) computational complexity. Furthermore, these gains are shown to be similar to the recently proposed soft-in-hard-out algebraic techniques (e.g., Sudan, Ko¿¿tter-Vardy) that bear significantly more complex implementations than the proposed algorithm.

Published in:

IEEE Transactions on Information Theory  (Volume:56 ,  Issue: 3 )