By Topic

On the Capacity of the Precision-Resolution System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schwartz, M. ; Dept. of Electr. & Comput. Eng., Ben-Gurion Univ., Beer-Sheva, Israel ; Bruck, J.

Arguably, the most prominent constrained system in storage applications is the (d,k)-run-length limited (RLL) system, where every binary sequence obeys the constraint that every two adjacent 1's are separated by at least d consecutive 0's and at most k consecutive 0's, namely, runs of 0's are length limited. The motivation for the RLL constraint arises mainly from the physical limitations of the read and write technologies in magnetic and optical storage systems. We revisit the rationale for the RLL system, reevaluate its relationship to the constraints of the physical media and propose a new framework that we call the Precision-Resolution (PR) system. Specifically, in the PR system there is a separation between the encoder constraints (which relate to the precision of writing information into the physical media) and the decoder constraints (which relate to its resolution, namely, the ability to distinguish between two different signals received by reading the physical media). We compute the capacity of a general PR system and compare it to the traditional RLL system.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 3 )