By Topic

Capacity of Channels With Frequency-Selective and Time-Selective Fading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Antonia M. Tulino ; Department of Wireless Communications, Bell Laboratories, Alcatel-Lucent, Holmdel ; Giuseppe Caire ; Shlomo Shamai ; Sergio Verdu

This paper finds the capacity of single-user discrete-time channels subject to both frequency-selective and time-selective fading, where the channel output is observed in additive Gaussian noise. A coherent model is assumed where the fading coefficients are known at the receiver. Capacity depends on the first-order distributions of the fading processes in frequency and in time, which are assumed to be independent of each other, and a simple formula is given when one of the processes is independent identically distributed (i.i.d.) and the other one is sufficiently mixing. When the frequency-selective fading coefficients are known also to the transmitter, we show that the optimum normalized power spectral density is the waterfilling power allocation for a reduced signal-to-noise ratio (SNR), where the gap to the actual SNR depends on the fading distributions. Asymptotic expressions for high/low SNR and easily computable bounds on capacity are also provided.

Published in:

IEEE Transactions on Information Theory  (Volume:56 ,  Issue: 3 )