By Topic

Adaptive Combination of Volterra Kernels and Its Application to Nonlinear Acoustic Echo Cancellation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Azpicueta-Ruiz, L.A. ; Dept. of Signal Theor. & Commun., Univ. Carlos III de Madrid, Leganés, Spain ; Zeller, M. ; Figueiras-Vidal, A.R. ; Arenas-Garcia, J.
more authors

The combination of filters concept is a simple and flexible method to circumvent various compromises hampering the operation of adaptive linear filters. Recently, applications which require the identification of not only linear, but also nonlinear systems are widely studied. In this paper, we propose a combination of adaptive Volterra filters as the most versatile nonlinear models with memory. Moreover, we develop a novel approach that shows a similar behavior but significantly reduces the computational load by combining Volterra kernels rather than complete Volterra filters. Following an outline of the basic principles, the second part of the paper focuses on the application to nonlinear acoustic echo cancellation scenarios. As the ratio of the linear to nonlinear echo signal power is, in general, a priori unknown and time-variant, the performance of nonlinear echo cancellers may be inferior to a linear echo canceller if the nonlinear distortion is very low. Therefore, a modified version of the combination of kernels is developed obtaining a robust behavior regardless of the level of nonlinear distortion. Experiments with noise and speech signals demonstrate the desired behavior and the robustness of both the combination of Volterra filters and the combination of kernels approaches in different application scenarios.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 1 )