By Topic

Distributed Wireless Sensor Network Localization Via Sequential Greedy Optimization Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qingjiang Shi ; Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai, China ; Chen He ; Hongyang Chen ; Lingge Jiang

Node localization is essential to most applications of wireless sensor networks (WSNs). In this paper, we consider both range-based node localization and range-free node localization with uncertainties in range measurements, radio range, and anchor positions. First, a greedy optimization algorithm, named sequential greedy optimization (SGO) algorithm, is presented, which is more suitable for distributed optimization in networks than the classical nonlinear Gauss-Seidel algorithm. Then a unified optimization framework is proposed for both range-based localization and range-free localization, and two convex localization formulations are obtained based on semidefinite programming (SDP) relaxation techniques. By applying the SGO algorithm to the edge-based SDP relaxation formulation, we propose a second-order cone programming (SOCP)-based distributed node localization algorithm. Two distributed refinement algorithms are also proposed by using the SGO algorithm to nonconvex localization formulations. The proposed localization algorithms all can be implemented partially asynchronously in networks. Finally, extensive simulations are conducted to demonstrate the efficiency and accuracy of the proposed distributed localization algorithms.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 6 )