By Topic

The Human-in-the-Loop Design Approach to the Longitudinal Automation System for an Intelligent Vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hsin-Han Chiang ; Dept. of Electron. Eng., Fu Jen Catholic Univ., Hsinchuang, Taiwan ; Shinq-Jen Wu ; Jau-Woei Perng ; Bing-Fei Wu
more authors

This paper presents a safe and comfortable longitudinal automation system which incorporates human-in-the-loop technology. The proposed system has a hierarchical structure that consists of an adaptive detection area, a supervisory control, and a regulation control. The adaptive detection area routes the information from on-board sensors to ensure the detection of vehicles ahead, particularly when driving on curves. Based on the recognized target distance from the adaptive detection area, the supervisory control determines the desired velocity for the vehicle to maintain safety and smooth operation in different modes. The regulation control utilizes a soft-computing technique and drives the throttle to execute the commanded velocity from the supervisory control. The feasible detection range is within 45 m, and the high velocity for the system operation is up to 100 km/h. The throttle automation under low velocity at 10-30 km/h can also be well managed by the regulation control. Numerous experimental tests in a real traffic environment exhibit the system's validity and achievement in the desired level of comfort through the evaluation of international standard ISO 2631-1.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:40 ,  Issue: 4 )