By Topic

A Radius Adaptive K-Best Decoder With Early Termination: Algorithm and VLSI Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung-An Shen ; Department of Electrical Engineering and Computer Science, University of California, Irvine, CA, USA ; Ahmed M. Eltawil

This paper presents a novel algorithm and architecture for K-Best decoding that combines the benefits of radius shrinking commonly associated with sphere decoding and the architectural benefits associated with K-Best decoding approaches. The proposed algorithm requires much smaller K and possesses the advantages of branch pruning and adaptively updated pruning threshold while still achieving near-optimum performance. The algorithm examines a much smaller subset of points as compared to the K-Best decoder. The VLSI architecture of the decoder is based on a pipelined sorter-free scheme. The proposed K-Best decoder is designed to support a 4 × 4 64-QAM system and is synthesized with 65-nm technology at 158-MHz clock frequency and 1-V supply. The synthesized decoder can support a throughput of 285.8 Mb/s at 25-dB signal-to-noise ratio with an area of 210 kGE at 12.8-mW power consumption.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:57 ,  Issue: 9 )