By Topic

A 11-Transistor Nanoscale CMOS Memory Cell for Hardening to Soft Errors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sheng Lin ; Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA ; Yong-Bin Kim ; Lombardi, Fabrizio

This paper proposes a new hardening design for an 11 transistors (11T) CMOS memory cell at 32 nm feature size. The proposed hardened memory cell overcomes the problems associated with the previous design by utilizing novel access and refreshing mechanisms. Simulation shows that the data stored in the proposed hardened memory cell does not change even for a transient pulse of more than twice the charge than a conventional memory cell. Moreover it achieves 55% reduction in power delay product compared to the DICE cell (with 12 transistors) providing a significant improvement in soft error tolerance. Simulation results are provided using the predictive technology file for 32 nm feature size in CMOS.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:19 ,  Issue: 5 )