By Topic

Data Aggregation and Analysis for Cancer Statistics - A Visual Analytics Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Maciejewski, R. ; Purdue Univ. Regional Visualization & Analytics Center (PURVAC), IN, USA ; Drake, T. ; Rudolph, S. ; Malik, A.
more authors

The disparity between data collected in rural and urban counties is often detrimental in the appropriate analysis of cancer care statistics. Low counts drastically affect the incidence and mortality rates of the data, leading to skewed statistics. In order to more accurately report the data, various levels of aggregation have been used (grouping counties by population, age percentages, etc.); however, such data aggregation methods have often been ad hoc and/or time consuming. Such groupings are performed on a user defined basis; however, grouping based purely on population demographics does not take into account the spatial relationships between data. Furthermore, researchers want to search for spatiotemporal correlations within their data domain. In this work, we introduce a visual analytics system for exploring cancer care statistics in a series of linked views and interactive user interface queries. We also apply the AMOEBA algorithm [1] for clustering counties based on population demographics in a visual analytics environment. Users select the population demographics field on which they wish to cluster, and these county clusters then form the basis for the data aggregation. Such a system allows the user to group their data by fields (age, gender, income) while maintaining spatial structure and provides and interactive mapping system in which to compare and explore such groupings. By utilizing such geographical groupings, we hope to better enhance the underlying structure of the data and help alleviate reporting problems associated with small area statistics.

Published in:

System Sciences (HICSS), 2010 43rd Hawaii International Conference on

Date of Conference:

5-8 Jan. 2010